Wednesday, August 6, 2014

Cosmic Web filled with Dark Energy



Barren bubble-like zones could help untangle universe's mysteries.
 Sometimes nothingness can reveal a whole lot.
While the universe is mostly empty, it contains bubble-like voids that are even emptier, taking up most of the space in the cosmos. And new research shows that these voids all look similar regardless of size — a consistency that may help unravel some of the universe's biggest mysteries.
If you zoom way out, all the matter in the universe looks like a huge cobweb, consisting of an expansive network of filaments and wall-like structures that crisscross one another.
More than 80 percent of this matter is dark matter, the invisible and mysterious stuff that appears to interact only gravitationally with the regular matter that makes up stars and galaxies. Residing in these filaments and walls of dark matter are galaxies, and the densest regions — where the filaments intersect — are sites of massive clusters of hundreds to thousands of galaxies.
But between the filaments and walls of this cosmic web are vast cosmic voids. There are stray galaxies here and there, but overall, these bubble-like voids are about 80 percent less dense than the cosmic average. There can even be voids within a void, producing a nested structure.
Voids may be filled with nothingness, but researchers are now realizing that these empty spaces may actually contain clues for solving cosmic riddles like the nature of dark matter and dark energy, the puzzling force that's accelerating the expansion of the cosmos.
"Normally people look for the presence of something — and that's very important," said Joseph Silk of the Paris Institute of Astrophysics. "But sometimes it's also important to measure the absence of something. The absence of galaxies is just another way of looking at the universe."
Astronomers discovered cosmic voids along with the cosmic web in the late 1970s. Since then, most of the focus has been on studying the cosmic web itself. But that's been changing over the last few years, said Rien van de Weijgaert of the University of Groningen in the Netherlands.
Prompted by the discovery of dark energy, more astronomers are exploring these voids. They have combined recent observations that map the three-dimensional distribution of hundreds of millions of galaxies with increasingly better computer simulations.
"There has been an explosion of interest," van de Weijgaert said.
A new study now shows that, on average, voids have similar features regardless of their size. A team of astronomers led by Nico Hamaus of the Paris Institute of Astrophysics used a computer simulation to generate tens of thousands of cosmic voids, which were then analyzed to devise a model that describes their average characteristics.
Voids do contain small amounts of mass, and the model describes how this mass is distributed within them. The density is lowest at the center and increases farther out — reaching a maximum where the matter becomes part of the cosmic web — before dropping off again. According to the analysis, this model can be applied to all cosmic voids.
"I was surprised by the simplicity and universality of this simple prescription to model the voids," Hamaus said. The study was published in the June 27 issue of Physical Review Letters.
Other researchers have developed similar descriptions of voids, but the new study takes it a step further by generalizing the findings to all voids, van de Weijgaert said. And that means voids can serve as a powerful tool for probing dark energy.
"That's the hope," Hamaus said. "We haven't proven this yet, but we have a feeling that [this model] could be useful."
Dark energy is thought to be a kind of constant energy that's embedded within the vacuum of the universe. Because voids are so empty — and thus contain minimal gravity, for instance — the effects of dark energy should dominate, making these empty bubbles a pristine place to study the mysterious force.
The fact that voids seem to have consistent features means researchers can apply the model to observations of not just one or two voids, but as many as they can measure. By comparing the model to observations, researchers can then test theories of dark energy.
Some astronomers have even suggested that studying cosmic voids could be the most accurate technique yet for measuring dark energy, van de Weijgaert said.
The new model, Silk added, could also be a tool for testing theories of cosmic inflation — the idea that the universe expanded extremely rapidly within the first moments after the Big Bang. According to theory, the pre-inflationary universe contained tiny, random fluctuations. Thanks to inflation, these fluctuations ballooned to eventually become the voids, filaments, and walls of the cosmic web.
Theory predicts that because the fluctuations were random, there should be a similar number of regions of high density as there are regions of low density. The new model can help predict if this is really the case, Silk said.
As for why cosmic voids would all be so similar in the first place, no one's sure yet, according to van de Weijgaert. But, he suggests that it's likely related to the fact that the density fluctuations in the early universe were fairly uniform.
There's a lot more to learn about cosmic voids and what they may reveal about the universe, he said. "It's certainly not the end of the story."

New Technology Could Boost Solar Cell Efficiency By 30 Percent


 A decades-old discovery may be crucial to increasing solar panel efficiency.
 Scientists looking to boost the efficiency of solar panels are taking a fresh look at an exotic physics phenomenon first observed nearly 50 years ago in glowing crystals.
Called singlet fission, the process can enable a single photon of light to generate two electrons instead of just one. This one-to-two conversion, as the process is known, has the potential to boost solar cell efficiency by as much as 30 percent above current levels, according to a new review paper published in the Journal of Physical Chemistry Letters.
Singlet fission "was originally proposed to explain some weird results that were observed in fluorescent organic crystals," said the study's first author Christopher Bardeen, a chemist at the University of California, Riverside. "It received a lot of attention in the 1960s and 1970s, but then it was mostly forgotten."
But beginning around 2006, Bardeen and other scientists exploring new ways to boost the solar-energy conversion rates of photovoltaic panels began taking a renewed interest in singlet fission. In recent years, experiments conducted by Bardeen's group not only helped confirm that the phenomenon is real, but also that it can be highly efficient in a variety of materials. The hope is that singlet fission materials can be incorporated into solar panels to increase their energy conversion efficiency–the ratio of electrons produced to the amount of photons absorbed–beyond the current theoretical ceiling of approximately 32 percent, which is called the "Shockley-Queisser Limit."
"The efficiency of most commercial-grade PV panels, like the ones you would install on your house, are around 20 to 25 percent," Bardeen said.
Engineers have managed to overcome the Shockley-Queisser Limit through clever engineering to boost the efficiency of photovoltaic, or PV, panels up to 50 percent – for example, one technology, called multi-junction solar cells, involves combining two or more semiconductor panels. But such technologies are currently limited mostly to military and space applications due to their high costs.
"It may be possible to find a way to make [multi-junction cells] cheaply … Some companies are trying to do this, but without much impact so far," Bardeen said.
Many scientists believe the only way the next wave, or "third generation," of photovoltaic technology will surpass the Shockley-Queisser Limit while remaining inexpensive is if they make use of new physical processes such as singlet fission.
"First generation solar cells were based on silicon, and they were efficient but expensive. The second generation cost much less and was based on thin-film technology. The goal of the third generation is to keep cost down but get efficiency as high as possible," Bardeen said.
Currently, solar cells work by absorbing a photon and generating an exciton -- a bound electron with a negative charge and a positively charged "hole" -- which subsequently separates into an electron-hole pair. The electrons are then harnessed as electricity. In singlet fission, however, some photons -- those with higher energy -- get converted into two excitons, each of which can split to yield two electrons. Bardeen's team estimates that singlet fission can boost efficiency of solar cells by up to 30 percent, resulting in a maximum efficiency of above 40 percent instead of the current 32 percent.
Experts predict that it could be another 5 to 10 years before solar panels based on singlet fission technology are ready for commercial use. Before that can happen, scientists will need to gain a much better understanding of how singlet fission works, said Josef Michl, a photophysicist at the University of Colorado, Boulder, who helped revive interest in singlet fission several years ago. At the moment, the main challenge for researchers trying to create a singlet fission solar panel is "a thorough understanding of the underlying physics that should allow chemists to come up with more practical materials than the few that we now know to work well in the laboratory," said Michl, who was not involved in the study.
Michl called Bardeen's group a "key player" in the worldwide effort to develop the technology, and said that his team's experimental work has helped singlet fission shed its "reputation of an obscure and inefficient phenomenon."
The other primary hurdle toward a functional singlet fission solar panel will be one of engineering, Bardeen said. Once more materials that can undergo singlet fission are developed, they will still need to be incorporated into photovoltaic cells to convert solar energy into electricity. Researchers led by Marc Baldo at the Massachusetts Institute of Technology recently reported that they had proven that it was possible to create a solar panel that uses singlet fission, but the efficiency of their device was only 2 to 3 percent.
"Baldo's group showed that it could be done," Bardeen said, "but nobody's going to be putting those on rooftops tomorrow."A

How Quantum Mechanics Helps Us Breathe


New insights explain how respiration does not result in asphyxiation.
 Why don't we suffocate whenever we try to take a breath? An international team of scientists has used quantum mechanics – the science that usually deals with events at the level of the ultra-small – to solve this human-sized mystery.
Quantum mechanics has long proved its value in understanding such phenomena as the behavior of electrons and in classifying subatomic particles. But in recent years theorists have increasingly shown how it applies to all facets of life, large and small.
The new research, led by Cédric Weber of Kings College, London and reported in the journalProceedings of the National Academy of Sciences, confirms that point.
"This work," said team member David O'Regan, a physicist at Ireland's Trinity College, Dublin, "helps to illustrate the fact that quantum-mechanical effects, which may sometimes be viewed as somehow very exotic or only relevant under extreme conditions, are at play in the day-to-day regimes where biology, chemistry, and materials science operate."
The conundrum elucidated by Weber's team stems from the way in which carbon monoxide reacts with proteins that carry oxygen around our bodies.
Those proteins, which contain iron atoms, transport oxygen molecules through the bloodstream to wherever the body needs them. According to conventional theory, the proteins should typically link up more often with molecules of carbon monoxide – from inside and outside the body – than with oxygen molecules.
If that happened regularly, it would result in asphyxiation, killing off humans and animals.
The small amounts of carbon monoxide naturally produced in our bodies would not be enough to displace oxygen fully, even if it had a greater binding ability. But we would be more vulnerable to poisoning by carbon monoxide in the atmosphere than experience shows to be the case. The fact that this doesn't happen means that oxygen molecules bind more effectively to proteins than theory forecasts.
"The problem that scientists have had is explaining how the proteins achieve this discrimination in favor of oxygen," said team member Daniel Cole, a chemist at Yale University in New Haven, Connecticut.
To do so, the team applied a computer simulation technique based on quantum mechanics to reactions of oxygen and carbon monoxide with myoglobin, the main oxygen-carrying protein in muscle tissue.
The technique, called density-functional theory, or DFT, won the 1998 Nobel Prize in Chemistry for its progenitor, Walter Kohn of the University of California, Santa Barbara. Since then it has become a bulwark of theoretical chemistry and physics.
"DFT has been the standard tool for simulating electronic properties of materials and molecules for a number of years," O'Regan said.
The team used the technique to study reactions between the iron atom inside myoglobin and a molecule of oxygen or carbon monoxide. These reactions involve electrostatics, the arrangement of electric charges in atoms and molecules. When the iron atom transfers negative electric charges to an oxygen or carbon monoxide molecule, it enables the molecule to attach itself to the entire myoglobin protein.
Unfortunately, the theory consistently predicted that carbon monoxide should bind to myoglobin much more readily than oxygen.
"Our previous DFT calculations had shown that there is a transfer of about half an electron to the oxygen molecule," Cole noted. "Although this provided some stabilization, it was not enough; the calculations predicted that carbon monoxide should be much, much more strongly bound than oxygen."
In response, the team employed two fresh approaches to the problem.
Because myoglobin molecules contain more than 1,000 atoms, the scientists used a special variety of DFT that, according to O'Regan, "is designed for dealing with larger systems without compromising on accuracy."
They also applied another extension of DFT, called dynamical mean-field theory.
"Using DMFT, we showed that, in fact, close to one electron is transferred to the oxygen molecule," Cole explained. "This provides much greater electrostatic stabilization than previously thought. It means that our estimate of the relative binding of oxygen and carbon dioxide is now in excellent agreement with experiment."
The analysis revealed that an effect called entanglement plays a critical role in binding oxygen molecules to the protein. Entanglement is a quintessential characteristic of quantum mechanics that links pairs of electrons so strongly that they no longer act independently. The process also involves Hund's exchange, another quantum-mechanical property that previous simulations had ignored.
"These effects strengthen the direct bonding between iron and oxygen, and also enhance electrostatic interactions with the protein," Cole explained.
The overall result: "We significantly improve the agreement of theory with experiment in terms of the relative tendencies to bind oxygen and carbon monoxide," O'Regan said.
The research has potential uses beyond understanding the molecular basis of breathing. According to Cole, the better understanding of how molecules bind to iron-containing proteins could help the drug-development process and possibly facilitate the design of artificial photosynthesis devices that would capture and store energy from the sun.

Tuesday, August 5, 2014

Remote Controlled Nanoscale protein motor !!

Zev Bryant, an assistant professor of bioengineering at Stanford, 
and his team are creating tiny protein motors that can be controlled remotely by light.

In every cell in your body, tiny protein motors are toiling away to keep you going. Moving muscles, dividing cells, twisting DNA – they are the workhorses of biology. But there is still uncertainty about how they function. To help biologists in the quest to know more, a team of Stanford bioengineers has designed a suite of protein motors that can be controlled remotely by light.
"Biology is full of these nanoscale machines that can perform complex tasks," said Zev Bryant, an assistant professor of bioengineering and leader of the team. "We want to understand how they can convert chemical energy into mechanical work and perform their specific tasks in cells."
Bryant's team, including doctoral student Muneaki Nakamura, designed blueprints for protein motors that would respond to light. Splicing together DNA from different organisms such as pig, slime mold and oat – the oat had the light-detecting module – the bioengineers created DNA codes for each of their protein motors.
The remote-controlled nanomotors are described by Nakamura, Bryant and their colleagues in a paper that appeared online Aug. 3 in Nature Nanotechnology.
When exposed to light, the new protein motors change direction or speed. "It's pretty fine spatial control; you can decide where the light is and where it isn't and control motors in this very exquisite way," Bryant said. Being able to control the motors in real time should be a boon for cell and developmental biologists trying to study forces and motion in living things.
"It's an entirely new project for us to be moving inside cells and organisms and to be working more closely with biologists," Bryant said. Now that he and his team have a basic blueprint, they will be able to customize these motors for biologists who are looking into specific tasks.
"In a future phase of our research, I hope that we can provide cell biologists with tools that allow them to change very specifically the properties of molecular motors in their cellular contexts," Bryant said.
There's also the possibility of using the controllable motors outside of biology, in diagnostic devices, for example. Bryant noted that researchers have worked on harnessing molecular motors to perform functions similar to their biological roles, "transporting molecules, sorting molecules, and concentrating molecules."
But first and foremost, Bryant is rebuilding these motors – incorporating features never before seen in biology – in an effort to illuminate their true nature.
"Evolution takes a basic design and makes motors that are fast and motors that are slow and motors that move long distances," Bryant said. "We've tried to build diverse motors and really challenge our understanding by pushing ourselves outside of what's already been done by evolution."

Transistor flipped by just a single photon

Schematic drawing of how a Rydberg atom is used in a single-photon optical transistor
Blocked drain: one photon flips atomic transistor

Two independent teams of physicists in Germany have created the first high-gain optical transistors that can be switched using a single photon. Based on ultracold atomic gases, the devices make use of the "Rydberg blockade", whereby the creation of an atom in a highly excited state has a huge effect on the ability of the surrounding gas to transmit light. The research might lead to the development of all-optical logical circuits that could operate much faster than conventional electronics. The transistors could also find use in photon-based quantum-information systems of the future.
Communications and computing systems that use only light to transmit and process information have the potential to be faster and much more energy-efficient than those that use electronic signals. While optical-fibre communications is already widespread, the switching and processing of optically encoded data is usually done by converting light pulses to an electronic signal, which can then be easily processed. The electronic signal is then converted back to a light pulse.

Making photons interact

This time-consuming and energy-hungry process is necessary because photons do not readily interact with each other, which makes the design of all-optical components a major challenge that is currently being addressed by physicists and engineers. During the past few years, several research groups have made important breakthroughs in this area by showing that photons can be made to interact with each other in specially prepared samples of ultracold atomic gas.
Now, two independent teams led by Sebastian Hofferberth of the University of Stuttgart and Stephan Dürr of the Max Planck Institute of Quantum Optics near Munich have created devices in which a single "gate" photon can switch off a stream of as many as 20 photons. This gain of 20 is a huge improvement on previous attempts at optical switches, which either needed pulses of several gate photons to achieve gains greater than one or offered gains of much less than one for single-gate photons.
Both teams based their gates on gases of rubidium atoms that were cooled to temperatures below 1 mK. Normally, the gas is transparent to a beam of "source" photons, which can travel through the device and emerge via the "drain" – gate, source and drain being terms used to describe the control, input and output channels, respectively, of a conventional field-effect transistor.

Blocking the drain

When a gate photon is fired into the gas, it is absorbed by one atom, which puts that atom into a highly excited Rydberg state with one electron in an extremely large orbital. The large distance between this electron and the nucleus gives the atom a very large electric dipole moment, which shifts the energy levels of nearby atoms. This shift causes the gas to become opaque to light from the source, effectively switching the transistor off. The Rydberg state endures for about 1 μs, which is a surprisingly long time for an atomic system. This allowed Dürr and colleagues to use their transistor to switch off a stream of 20 source photons, while Hofferberth's team prevented 10 photons from reaching the drain of its device.
"This effect should make it possible – at least in principle – to cascade such transistors to solve complex computational tasks," says Dürr. He also points out that the experiments offer physicists a new and non-destructive way of studying the physics of Rydberg states. The ability to operate at the single-photon level also means that the transistors could find use in quantum-information applications such as secure quantum-communication systems or powerful quantum computers.
Another interesting aspect of the devices is that the gate photon is re-emitted by the gas when the Rydberg states decay – an effect that has been observed in other experiments. In principle, this means that the transistors could also be used as storage devices for quantum information.
Both experiments are described in separate papers in Physical Review Letters.

Silicon Nanorods bend light in new direction

Scanning electron micrograph of an axicon lens made of silicon nanorods
Swirling nanorods: an axicon lens made of silicon
Ultrathin coatings that arbitrarily manipulate the phase and polarization of electromagnetic waves have been created by researchers in the US. The coatings are made from silicon nanorods using a technique that is compatible with industrial processes such as photolithography. The researchers say that the coatings could be used in new types of optical components that are much less bulky than traditional lenses. The technique could even be used to bend light in ways not possible with conventional lenses.
Fermat's principle – the rule that light travels along the path of least time – says that electromagnetic waves travel along the path on which they accumulate the least phase. In a medium of higher refractive index, the wavelength shortens and so a wave accumulates more phase across the same distance. A wave therefore bends towards the normal to reduce the distance travelled in the medium and the phase accumulated.

Manipulative metasurface

In a conventional optical component such as a lens, phase accumulates continuously as the wave propagates and this determines the nature of the wave that emerges from the lens. However, if the phase of a wave could be changed discontinuously at a surface (called a metasurface), then the wave could, in principle, be manipulated in ways not possible with conventional optics.
While this is straightforward in theory, the challenge facing physicists is how to create such a phase discontinuity using real materials. In 2011 researchers at Harvard University led by Federico Capasso and Zeno Gaburro covered a surface with V-shaped gold antennas so that the surface could be used to introduce any desired phase shift to optical waves passing through it. While this allows the arbitrary redirection of visible light, there are two major problems with this approach. First, the metallic nature of the surface means that most of the visible light is lost as it travels through the surface. Second, thin layers of metal are very difficult to work with and incompatible with the complementary metal-oxide semiconductor (CMOS) process used to make modern electronic devices.
In the new research, Mark Brongersma and colleagues at Stanford University in California use lossless silicon optical antennas. When illuminated by a particular frequency of light (which can be selected by varying its diameter), the antenna will resonate strongly. This causes the light wave to pick up a phase shift that depends on the relative orientations of its polarization axes to the antenna. By appropriately tailoring the orientations and distances between the antennas, the surface can impart any desired phase shift to the light. This allowed the researchers to reproduce the functions of a bulk lens with a single layer of nanorods just 100 nm thick.

Axicons and Bessel beams

The team was able to create various types of "lenses" using this technique. These include traditional focusing lenses and an axicon. The latter is a specialized type of conical lens that transforms an ordinary laser beam into a Bessel beam – a ring-shaped beam used in optical tweezers and eye surgery.
Optics expert John Pendry of Imperial College London is impressed. "If anyone in the electronics or photonics game wanted to use a material, it would have to be silicon," he explains. "You can lay down silicon extremely flat and shape it very precisely. Metals are nowhere near silicon in terms of the precision and the control you can exert over them; so, if you can translate a technology like metasurfaces into a silicon environment, you're on to a real winner because you can hook on to this bandwagon that's been rolling for half a century now."
I think that Intel or other companies based on CMOS technology can implement such a metasurface now
Erez Hasman, Technion-Israel
In the experiment, the metasurfaces were fabricated by electron-beam lithography, but team member Erez Hasman, now at the Technion-Israel Institute of Technology in Haifa, says that commercial companies could produce large quantities using industrial processes such as photolithography. "I think that Intel or other companies based on CMOS technology can implement such a metasurface now," he says.
"The theoretical concept is not surprising at this point, but the fact that they built it and it works is interesting," agrees Andrea Alù, an expert on metasurfaces at the University of Texas at Austin. He looks forward to the development of optical components that are not possible with normal lenses. Hasman suggests that one of the first such uses might be to interface waveguides with free space. "In general, the modes of a laser resonator or a waveguide are very complex and different from the modes of free space," he says. Coupling the two together to allow signals to pass between them, he explains, is very difficult using a lens or a prism but should be no problem using the 2D metasurface.
The research is published in Science

Sunday, July 27, 2014

Scientists turn air into 'Optical Fibre'

Lasers were used to create a column of low-density air surrounding a core of higher-density air that acted like a conduit to channel light (USAF)
Scientists say they have turned thin air into an 'optical fibre' that can transmit and amplify light signals without the need for any cables.
In a proof-of-principle experiment they created an "air waveguide" that could one day be used as an instantaneous optical fibre to any point on earth, or even into space.
The findings, reported in the journal Optica, have applications in long range laser communications, high-resolution topographic mapping, air pollution and climate change research, and could also be used by the military to make laser weapons.
"People have been thinking about making air waveguides for a while, but this is the first time it's been realised," says Professor Howard Milchberg of the University of Maryland, who led the research, which was funded by the US military and National Science Foundation.
Lasers lose intensity and focus with increasing distance as photons naturally spread apart and interact with atoms and molecules in the air.
Fibre optics solves this problem by beaming the light through glass cores with a high refractive index, which is good for transmitting light.
The core is surrounded by material with a lower refractive index that reflects light back in to the core, preventing the beam from losing focus or intensity.
Fibre optics, however, are limited in the amount of power they can carry and the need for a physical structure to support them.

Light and air

Milchberg and colleagues' made the equivalent of an optical fibre out of thin air by generating a laser with its light split into a ring of multiple beams forming a pipe.
They used very short and powerful pulses from the laser to heat the air molecules along the beam extremely quickly.
Such rapid heating produced sound waves that took about a microsecond to converge to the centre of the pipe, creating a high-density area surrounded by a low-density area left behind in the wake of the laser beams.
"A microsecond is a long time compared to how far light propagates, so the light is gone and a microsecond later those sound waves collide in the centre, enhancing the air density there," says Milchberg.
The lower density region of air surrounding the centre of the air waveguide had a lower refractive index, keeping the light focused.
"Any structure [even air] which has a higher density will have a higher index of refraction and thereby act like an optical fibre," says Milchberg.

Amplified signal

Once Milchberg and colleagues created their air waveguide, they used a second laser to spark the air at one end of the waveguide turning it into plasma.
An optical signal from the spark was transmitted along the air waveguide, over a distance of a metre to a detector at the other end.
The signal collected by the detector was strong enough to allow Milchberg and colleagues to analyse the chemical composition of the air that produced the spark.
The researchers found the signal was 50 per cent stronger than a signal obtained without an air waveguide.
The findings show the air waveguide can be used as a "remote collection optic," says Milchberg.
"This is an optical fibre cable that you can reel out at the speed of light and place next to [something] that you want to measure remotely, and have the signal come all the way back to where you are."
Australian expert Professor Ben Eggleton of the University of Sydney says this is potentially an important advance for the field of optics.
"It's sort of like you have an optical fibre that you can shine into the sky, connecting your laser to the top of the atmosphere," says Eggleton.
"You don't need big lenses and optics, it's already guided along this channel in the atmosphere."

Friday, July 25, 2014

How to weigh a Galaxy ?

Step on a scale and you’ll get a quick measure of your weight. Weighing galaxy clusters, groups of hundreds or thousands of galaxies bound together by gravity, isn’t so easy.
But scientists have many ways to do it. This is fortunate for particle astrophysics; determining the mass of galaxy clusters led to the discovery of dark matter, and it’s key to the continuing study of the “dark” universe: dark matter and dark energy.
“Galaxy cluster measurements are one of the most powerful probes of cosmology we have,” says Steve Allen, an associate professor of physics at SLAC National Accelerator Laboratory and Stanford University.
When you weigh a galaxy cluster, what you see is not all that you get. Decades ago, when scientists first estimated the masses of galaxy clusters based on the motions of the galaxies within them, they realized that something strange was going on. The galaxies were moving faster than expected, which implied that the clusters were more massive than previously thought, based on the amout of light they emitted. The prevailing explanation today is that galaxy clusters contain vast amounts of dark matter. 
Measurements of the masses of galaxy clusters can tell scientists about the sizes and shapes of the dark matter “halos” enveloping them and can help them determine the effects of dark energy, which scientists think is driving the universe’s accelerating expansion.
Today, researchers use a combination of simulations and space- and ground-based telescope observations to estimate the total masses of galaxy clusters.
Redshift, blueshift: Just as an ambulance’s siren seems higher in pitch as it approaches and lower as it speeds into the distance, the light of objects traveling away from us is shifted to longer, “redder” wavelengths, and the light of those traveling toward us is shifted to shorter, “bluer” wavelengths. Measurements of these shifts in light coming from galaxies orbiting a galaxy cluster can tell scientists how much gravitational pull the cluster has, which is related to its mass.
Gravitational lensing: Gravitational lensing, theorized by Albert Einstein, occurs when the light from a distant galaxy is bent by the gravitational pull of a massive object between it and the viewer. This bending distorts the image of the background galaxy (pictured above). Where the effects are strong, the process can cause dramatic distortions; multiple images of the galaxy can appear. Typically, however, the effects are subtle and require careful measurements to detect. The greater the lensing effect caused by a galaxy cluster, the larger the galaxy cluster’s mass.
X-rays: Galaxy clusters are filled with superhot, 10- to 100-million-degree gas that shines brightly at X-ray wavelengths. Scientists use X-ray data from space telescopes to find and study massive galaxy clusters. They can use the measured properties of the gas to infer the clusters’ masses.
The Sunyaev-Zel’dovich effect: The Sunyaev-Zel’dovich effect is a shift in the wavelength of the Cosmic Microwave Background—light left over from the big bang—that occurs when this light passes through the hot gas in a galaxy cluster. The size of the wavelength shift can tell scientists the mass of the galaxy cluster it passed through.
“These methods are much more powerful in combination than alone,” says Aaron Roodman, a faculty member at the Kavli Institute for Particle Astrophysics and Cosmology at SLAC National Accelerator Laboratory. 
Forthcoming data from the Dark Energy Survey, the under-construction Large Synoptic Survey Telescope and Dark Energy Spectroscopic Instrument, improved Sunyaev-Zel’dovich effect measurements, and the soon-to-be-launched ASTRO-H and eRosita X-ray telescopes should further improve galaxy cluster mass estimates and advance cosmology. Computer simulations are also playing an important role in testing and improving mass estimates based on data from observations.
Even with an extensive toolkit, it remains a challenging business to weigh galaxy clusters,  says Marc Kamionkowski, a theoretical physicist and professor of physics and astronomy at Johns Hopkins University. They are constantly changing; they continue to suck in matter; their dark matter halos can overlap; and no two are alike.
“It’s like asking how many birds are in my backyard,” he says.
Despite this, Allen says he sees no roadblocks toward pushing mass estimates to within a few percent accuracy.
“We will be able to take full advantage of these amazing new data sets that are coming along,” he says. “We are going to see rapid advances.”

First Schrödinger's Cat ...and now Paradoxical Pigeons

Photograph of pigeons roosting
First there was Schrödinger's cat, now an international team of physicists has come up with a new animal-related paradox involving "quantum pigeons".
For nearly a century students have struggled to understand the many counter-intuitive implications of quantum physics. Perhaps the most famous paradox is Schrödinger's cat, whereby a cat being both dead and alive at the same time illustrates the fact that a particle can exist simultaneously in two quantum states.
Now, Jeff Tollaksen of Chapman University in California and colleagues in Israel, Italy and the UK have proposed an equally bizarre scenario dubbed the "quantum-pigeonhole effect". The paradox begins with the observation that when you put three pigeons in two pigeonholes, there will always be at least two pigeons in the same hole. But according to the team's quantum analysis, it is possible for none of the pigeons to share a hole.
"It's one of those things that seem to be impossible," says Tollaksen. But it is a direct consequence of quantum mechanics and, he adds, "It really has immense implications."

Nondeterministic measurements

Classical physics is deterministic. This means that measuring the initial state of a system will, in principle, tell you everything you need to determine the final state. But in 1964 Yakir Aharonov of Chapman University and Tel Aviv University helped discover that in quantum mechanics, you can choose initial and final states that are entirely independent, Tollaksen says.
Now Aharonov has teamed up with Tollaksen and colleagues to use this and other concepts of quantum mechanics to postulate the quantum-pigeonhole effect. They reckon that the effect will arise when an observer makes a sequence of measurements while trying to fit three particles in two boxes. First, you make an initial, "pre-selection" measurement of the locations of the particles. Next, you can perform an intermediate measurement to see whether two particles share a box. Finally, you make a final, "post-selection" measurement of the locations. You can make the pre-selection and post-selection measurements such that they are completely independent. In the intermediate step, you can make what's called a weak measurement to look at all three particles simultaneously. And when you do, it turns out that no two particles share a box.

Spooky and profound

The implications of these results, Tollaksen says, complement the well-known Einstein–Podolsky–Rosen (EPR) paradox. In this scenario, two particles that start in the same place can become intimately correlated, a relationship called entanglement. Measuring the state of the first particle seems to influence the state of the second one, even if they are subsequently separated by distances so great that it would be impossible to explain the influence using classical physics. This unsettling conclusion led Einstein to call entanglement "spooky action at a distance".
"EPR is one of the most profound discoveries in science," Tollaksen says. "But that's only half the story." The quantum-pigeonhole principle creates a somewhat opposite situation, he explains. Three particles can begin separated with no connections or correlations at all. You bring them together and force them to interact by squeezing them in two boxes. During this intermediate stage, they are more strongly correlated than classically possible. But in the final stage, they are not correlated at all.
The implications of the EPR paradox are important and shape our understanding of information and the fundamental physics of matter. Although it is too early to predict every implication, he believes that the quantum-pigeonhole principle could prove to be just as influential – if not more so. "This is at least as equally profound, if not more profound," he says. It implies a new concept of correlation that is surprising.

Electronic pigeons

To verify their conclusions, Tollaksen and colleagues propose an experiment in which three electrons travel through an interferometer. This is essentially a beam splitter that creates two separate paths for the electrons, which then meet again.
Because there are only two possible paths, you would expect at least two electrons to share a path. If so, then the two will be close together and interact: their identical electric charges will repel each other, slightly deflecting their trajectories. Then physicists will be able to detect these deflections when all three electrons reunite after the paths converge. But, Tollaksen says, because their calculations show that no two of the three electrons will actually follow the same path, no deflections will be observed.
Physicists have not done these experiments yet, but Tollaksen is confident in their results. "I'm sure it will be confirmed experimentally very soon," he says.
The new results seem "fascinating," says Leonard Susskind of Stanford University. "I would guess that the new effect is a serious step in understanding quantum correlations."

Wednesday, June 11, 2014

NASA's "Enterprise" for faster-than-light Space Travel

ISX Enterprise

NASA scientist and Advanced Propulsion Team Lead Harold White has the kind of job thousands dream of and few achieve — he’s in charge of the space agency’s efforts to determine if a faster-than-light warp drive is actually possible and, if it is, how we might create one. Now, in conjunction with artist Mark Rademaker, White has unveiled a new starship model that illustrates how our consideration of the concept has evolved over the decades. Rademaker designed the first theoretical warp ship concept to consciously echo the Matt Jeffries design for the UEV-47; the first faster-than-light version of the Starship Enterprise. This new version of the ship is chunkier, more compact, and according to Harold White, a better match for what the mathematics of an Alcubierre warp drive currently predict.
And of course, she’s called the IXS Enterprise.

IXS Enterprise

Have we found any proof a warp drive can exist?

While a pretty concept design is nice, it still isn’t clear if a warp drive can actually exist. NASA’s current experiments are an attempt to measure whether the warp bubble Alcubierre theorized could exist can exist in our universe. There’s an enormous gap between saying “Mathematically this doesn’t violate any of the known laws of physics,” and saying “We’ve detected an actual warp bubble in the real world.”
The inferometer experiment White oversees is designed to measure such an effect at nanoscale. Currently, data is inconclusive — the team notes that while a non-zero effect was observed, it’s possible that the difference was caused by external sources. More data, in other words, is necessary. Failure of the experiment wouldn’t automatically mean that warp bubbles can’t exist — it’s possible that we’re attempting to detect them in an ineffective way.
White-Juday_Warp_Field_interferometer
Nonetheless, the fact that we’re struggling to even discover if a warp bubble can form is evidence of how much work remains until we could plausibly tap the effect for space exploration. This new ship is as much a PR move as a demonstration of capability — but the implications of a warp bubble that allowed for even fractional light-speed travel are enormous. The ability to move at 1% the speed of light would put the entire Solar System within our reach; 0.1% light speed would make exploration and colonization of Mars or the Moon a much simpler problem.
Harold White's possible warp drive, and star ship
In Harold White’s possible Alcubierre warp drive, the ring around the starship creates a “warp bubble” that allows for faster-than-light travel inside it.
One good piece of news is that early fears that a hypothetical warp drive could be a star system-annihilating event have been disproven by a better evaluation of the mathematics. New data suggests this is unlikely to be an issue, though vessels observing the warp drive ship in close proximity could still be at risk. Energy requirements have also come down sharply, from Alcubierre’s initial calculation that planetary-sized power sources would be required to more recent data that suggests we could build a ship with a power source the size of Voyager 2 — if we can create the necessary effect at the appropriate scale
For now, a warp drive remains science fiction — but if we can ever build one, the impact on human civilization could rival the invention of fire. Despite some bombastic reporting in other places, it’s not a “real-life” Enterprise — not yet — but the fact that news of warp drive research continues to grab headlines is an example of just how exciting this technology could be.

Tuesday, June 10, 2014

Turn your Computer to Quantum Computer !

Google Chrome, Quantum Computing Playground IDE

Thanks to some ingenious engineers at Google, you can now turn your desktop PC into a quantum computer. Well, OK, not quite: You can simulate a quantum computer on your PC by running the Quantum Computing Playground web app for Chrome. The Playground allows you to run famous quantum algorithms, such as Grover’s, or even to write your own quantum script. 
The Quantum Computing Playground is a Chrome Experiment (i.e. web app) that uses WebGL to simulate up to 22 qubits on your GPU. You get a basic IDE to write, compile, and run your code; some example algorithms (Grover’s, Shor’s); and a handy debugger and 3D quantum state visualization tool, so you can see what’s going on inside your little quantum computer. The programs are written in a language called QScript, which looks a lot like any other simple Bash-like scripting language.
Here's the link 
http://qcplayground.withgoogle.com/#/home

Quantum Compass : Successor to GPS

Cooling Lasers

Virtually every mobile device on the planet has a GPS chip built-in that lets you find your way around, but GPS is getting old and doesn’t work well in all situations. The British Ministry of Defence is hard at work developing a so-called “quantum compass” that could become the successor to GPS, and just like GPS, it might land in your pocket one day.

The UK military is investing millions of pounds in the quantum compass mainly for use in submarines. GPS systems require a view of the sky, or at least very little obstruction to get a location fix. A tube of metal sliding through the water 100 meters beneath the waves can’t really get a GPS lock. Subs currently use a type of inertial location system based on accelerometers. Each twist and turn a submarine makes is recorded and used to calculate its position based on the last known coordinates. This is called dead reckoning navigation.

Submarine
A quantum compass takes advantage of the 1997 Nobel-winning discovery that lasers can be used to cool atoms to within fractions of a degree of absolute zero. Atoms in this frozen state are extremely sensitive to the magnetic and gravitational field of the Earth. Thus, they can be used to track movement with amazing accuracy. To be clear, this is still a type of inertial “dead reckoning” navigation. The difference is that after getting a solid GPS lock, a sub could go underwater and be exactly on target when it surfaces days or even weeks later.

The prototype compass build by the Ministry of Defence resembles a 1-meter-long shoe box. Inside is an array of lasers cooling a tiny cloud of rubidium atoms. Three such devices could be placed at right angles to each other to measure movement along all three axes. The next step is to miniaturize the technology, perhaps making it compact enough to be integrated in a single chip.
But why go to all this trouble for submarines? Well, that’s not the only reason for governments to move away from satellite positioning systems. The US has long warned that the signals from GPS satellites could be interfered with or hijacked to corrupt location information. Additionally, as international tensions mount over space, several countries (most notably China) have tested satellite-busting weapons that could cripple GPS and leave space strewn with junk. And of course, the US could always cut off other countries and civilians from using its GPS network.